|
| 1 | +# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import numpy as np |
| 16 | +from datasets import load_dataset |
| 17 | + |
| 18 | +from paddle.io import Dataset |
| 19 | +from .imaug.label_ops import MixTexLabelEncode |
| 20 | +from .imaug import transform, create_operators |
| 21 | + |
| 22 | +from paddlenlp.transformers.roberta.tokenizer import RobertaTokenizer |
| 23 | + |
| 24 | + |
| 25 | +class MixTexDataSet(Dataset): |
| 26 | + def __init__(self, config, mode, logger, seed=None): |
| 27 | + super(MixTexDataSet, self).__init__() |
| 28 | + self.logger = logger |
| 29 | + self.mode = mode.lower() |
| 30 | + |
| 31 | + global_config = config["Global"] |
| 32 | + dataset_config = config[mode]["dataset"] |
| 33 | + loader_config = config[mode]["loader"] |
| 34 | + |
| 35 | + self.data_dir = dataset_config["data_dir"] |
| 36 | + self.image_size = global_config["d2s_train_image_shape"] |
| 37 | + self.batchsize = dataset_config["batch_size_per_pair"] |
| 38 | + self.max_seq_len = global_config["max_seq_len"] |
| 39 | + self.rec_char_dict_path = global_config["rec_char_dict_path"] |
| 40 | + self.tokenizer = MixTexLabelEncode(self.rec_char_dict_path) |
| 41 | + |
| 42 | + self.dataframe = load_dataset(self.data_dir) |
| 43 | + |
| 44 | + self.ops = create_operators(dataset_config["transforms"], global_config) |
| 45 | + self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx", 2) |
| 46 | + self.need_reset = True |
| 47 | + |
| 48 | + def __getitem__(self, idx): |
| 49 | + image = self.dataframe["train"][idx]["image"].convert("RGB") |
| 50 | + image = np.asarray(image) |
| 51 | + data = {"image": image} |
| 52 | + pixel_values = transform(data, self.ops) |
| 53 | + target_text = self.dataframe["train"][idx]["text"] |
| 54 | + target = self.tokenizer.tokenizer( |
| 55 | + target_text, |
| 56 | + padding="max_length", |
| 57 | + max_length=self.max_seq_len, |
| 58 | + truncation=True, |
| 59 | + ).input_ids |
| 60 | + labels = [ |
| 61 | + label if label != self.tokenizer.tokenizer.pad_token_id else -100 |
| 62 | + for label in target |
| 63 | + ] |
| 64 | + # labels = [label if label != self.tokenizer.pad_token_id else -100 for label in target] |
| 65 | + return (pixel_values, labels) |
| 66 | + |
| 67 | + def __len__(self): |
| 68 | + return len(self.dataframe["train"]) |
0 commit comments