Skip to content

Commit dd37666

Browse files
Document eebus dimming (#927)
Co-authored-by: premultiply <[email protected]>
1 parent 1569d15 commit dd37666

File tree

2 files changed

+281
-30
lines changed

2 files changed

+281
-30
lines changed

docs/features/14a-enwg-steuve.mdx

Lines changed: 26 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -26,39 +26,17 @@ Wichtige Punkte:
2626

2727
evcc unterstützt zwei Wege für die Anbindung: **Relais** (analog über einen Schaltkontakt) oder **EEBus** (digital über das EEBus-Protokoll).
2828

29-
## Lastmanagement einrichten
29+
## Einrichtung
3030

31-
Für die § 14a EnWG Steuerung muss das [Lastmanagement](./loadmanagement) konfiguriert sein.
32-
Dabei wird ein spezieller `lpc` (Local Power Control) Stromkreis angelegt, dem alle steuerbaren Verbraucher zugeordnet werden.
33-
Bei aktivem Reduzierungssignal setzt evcc automatisch ein temporäres Leistungslimit für diesen Stromkreis.
31+
Die § 14a EnWG Steuerung nutzt das [Lastmanagement](./loadmanagement) von evcc.
32+
Beim Einrichten von HEMS wird automatisch ein interner `lpc` (Local Power Control) Steuerstromkreis angelegt, dem alle Ladepunkte und sonstigen Verbraucher zugeordnet werden.
33+
Bei aktivem Reduzierungssignal setzt evcc ein temporäres Leistungslimit für diesen Stromkreis.
3434

35-
### Minimale Konfiguration
35+
Eine separate Lastmanagement-Konfiguration ist nicht erforderlich.
36+
Falls du bereits Lastmanagement nutzt, wird der `lpc` Steuerstromkreis als oberste Ebene über deine bestehenden Stromkreise gesetzt.
3637

37-
```yaml
38-
circuits:
39-
- name: lpc # Local Power Control - Stromkreis für Netzanforderungen
40-
41-
loadpoints:
42-
- title: Garage
43-
charger: charger1
44-
circuit: lpc # steuerbarer Verbraucher
45-
- title: Carport
46-
charger: charger2
47-
circuit: lpc # steuerbarer Verbraucher
48-
```
49-
50-
Alle Ladepunkte, die dem `lpc` Stromkreis oder einem Unterstromkreis zugeordnet sind, werden bei einer Regelanforderung entsprechend reduziert.
51-
52-
Für erweiterte Konfigurationen mit Unterstromkreisen siehe [Lastmanagement](./loadmanagement).
53-
54-
:::info Höchste Ebene
55-
Der `lpc` Stromkreis hat immer die höchste Ebene.
56-
Definierst du ihn nicht manuell (wie oben), wird er bei konfiguriertem HEMS automatisch erstellt und über dem höchsten Stromkreis eingefügt.
57-
:::
58-
59-
:::tip Konfigurationsoberfläche
60-
Lastmanagement und HEMS können auch über die Konfigurationsoberfläche eingerichtet werden.
61-
Wichtig: Konfiguriere zuerst das Lastmanagement, bevor du HEMS einrichtest.
38+
:::tip
39+
HEMS kann auch über die Konfigurationsoberfläche eingerichtet werden.
6240
:::
6341

6442
## Konfiguration via Relais (Analog)
@@ -253,6 +231,24 @@ Nach Ende der Leistungsreduzierung wird das Netzladen automatisch fortgesetzt.
253231

254232
Wenn ein Regellimit aktiv ist, wird ein **Banner mit Regelhinweis** auf der Hauptseite in evcc angezeigt.
255233

234+
## Steuerung weiterer Verbraucher
235+
236+
Neben Ladepunkten können auch weitere steuerbare Verbraucher in das §14a Lastmanagement einbezogen werden.
237+
Dies betrifft z. B. Wärmepumpen oder Batteriespeicher, die über EEBus angebunden oder als Zähler mit zusätzlichem Relaisausgang konfiguriert sind.
238+
239+
Die Steuerung berücksichtigt dabei die aktuelle Leistungsaufnahme aller dem internen `lpc` Stromkreis zugeordneten Verbraucher.
240+
Dazu zählen automatisch alle Ladepunkte und alle Zähler mit entsprechenden Schaltausgängen oder EEBus-Schnittstelle mit LPC Use Case als sonstige Verbraucher.
241+
242+
Zunächst werden alle sonstigen Verbraucher gedimmt.
243+
Die verbleibende Leistung wird dann auf die aktiven Ladepunkte verteilt.
244+
Durch pauschale Dimmung der sonstigen Verbraucher kann die verfügbare Ladeleistung für aktive Ladepunkte in Ausnahmefällen sogar höher sein als im Normalzustand.
245+
Reicht die Drosselung der Ladepunkte einschließlich der Dimmung aller sonstigen Verbraucher nicht aus, werden Ladevorgänge an Ladepunkten unterbrochen.
246+
247+
:::note Verfügbarkeit
248+
Aktuell existiert nur ein dimmbarer Zähler (EEBus Verbraucher).
249+
Diese Funktion wird weiter ausgebaut und entsprechende Zähler werden in der [Gerätedokumentation](/docs/devices/meters) markiert.
250+
:::
251+
256252
## Weiterführende Informationen
257253

258254
- [Lastmanagement](./loadmanagement) - Grundlagen der Lastverteilung
Lines changed: 255 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,255 @@
1+
---
2+
sidebar_position: 10
3+
---
4+
5+
# § 14a EnWG & SteuVE
6+
7+
:::info Current Development
8+
The implementation of § 14a EnWG is still being rolled out.
9+
Control boxes and Smart Meter Gateways are currently being deployed.
10+
:::
11+
12+
evcc supports external control of charging points by grid operators in accordance with § 14a EnWG.
13+
This enables reduced grid fees whilst ensuring grid stability.
14+
15+
## Background
16+
17+
§ 14a of the German Energy Industry Act (EnWG) regulates grid-friendly control of controllable consumption devices (SteuVE).
18+
Grid operators can temporarily reduce the power of large consumers such as wallboxes, heat pumps or battery storage systems in the event of grid overload.
19+
In return, customers receive reduced grid fees.
20+
21+
Important points:
22+
23+
- Affects consumers from 4.2 kW power
24+
- Control via Smart Meter Gateway and control box
25+
- Customers benefit from reduced grid fees
26+
27+
evcc supports two connection methods: **Relay** (analogue via a switch contact) or **EEBus** (digital via the EEBus protocol).
28+
29+
## Setup
30+
31+
§ 14a EnWG control uses evcc's [Load Management](./loadmanagement).
32+
When setting up HEMS, an internal `lpc` (Local Power Control) control circuit is automatically created, to which all charging points and other consumers are assigned.
33+
When a reduction signal is active, evcc sets a temporary power limit for this circuit.
34+
35+
No separate load management configuration is required.
36+
If you already use load management, the `lpc` control circuit will be placed as the highest level above your existing circuits.
37+
38+
:::tip
39+
HEMS can also be set up via the configuration interface.
40+
:::
41+
42+
## Configuration via Relay (Analogue)
43+
44+
The analogue connection via a switch contact is the simplest solution.
45+
The control box activates a contact which is evaluated by evcc.
46+
47+
### Basic Configuration
48+
49+
```yaml
50+
hems:
51+
type: relay
52+
maxPower: 8400 # Total power limit when signal is active (in watts)
53+
limit:
54+
# Plugin-specific configuration
55+
```
56+
57+
### Determining the Power Limit
58+
59+
The power limit is communicated to you by the grid operator.
60+
For multiple controllable consumption devices (SteuVE), the simultaneity factor is taken into account.
61+
You can also calculate the limit yourself using the formula: **Total limit = Number of SteuVE × 4.2 kW × Simultaneity factor**. Details on the calculation can be found [here](https://www.inexogy.com/blog/14a-enwg/).
62+
63+
### Examples for Different Connections
64+
65+
import Tabs from "@theme/Tabs";
66+
import TabItem from "@theme/TabItem";
67+
68+
<Tabs>
69+
<TabItem value="gpio" label="Raspberry Pi GPIO">
70+
71+
When using a Raspberry Pi, the GPIO pin can be read directly:
72+
73+
```yaml
74+
hems:
75+
type: relay
76+
maxPower: 8400 # Example for 2 SteuVE
77+
limit:
78+
source: script
79+
cmd: gpioget gpiochip0 17 # Read GPIO pin 17
80+
# Return value: 0 = not limited, 1 = limited
81+
```
82+
83+
</TabItem>
84+
<TabItem value="mqtt" label="MQTT">
85+
86+
If the control box or gateway sends MQTT messages:
87+
88+
```yaml
89+
hems:
90+
type: relay
91+
maxPower: 11340 # Example for 3 SteuVE with simultaneity factor 0.9
92+
limit:
93+
source: mqtt
94+
topic: hems/limit/status
95+
# Expected values: 0/false = normal, 1/true = limited
96+
```
97+
98+
</TabItem>
99+
<TabItem value="http" label="HTTP API">
100+
101+
For control boxes with REST API:
102+
103+
```yaml
104+
hems:
105+
type: relay
106+
maxPower: 13440 # Example for 4 SteuVE with simultaneity factor 0.8
107+
limit:
108+
source: http
109+
uri: http://steuerbox.local/api/limit
110+
jq: .limited # JSON path to boolean value
111+
```
112+
113+
</TabItem>
114+
</Tabs>
115+
116+
## Configuration via EEBus (Digital)
117+
118+
The digital connection via EEBus is the future-proof and preferred solution.
119+
The control box communicates directly with evcc via the EEBus protocol and automatically transmits the power limit.
120+
121+
### Prerequisites
122+
123+
- evcc installation with EEBus support
124+
- Control box with EEBus interface
125+
- Network connection between evcc and control box
126+
127+
### Step 1: Generate Certificates
128+
129+
EEBus requires certificates for secure communication. These must be created once.
130+
Run the following command in the console:
131+
132+
```bash
133+
evcc eebus-cert
134+
```
135+
136+
This command creates the required certificates and displays the configuration that must be inserted into `evcc.yaml`.
137+
138+
### Step 2: Basic EEBus Configuration
139+
140+
Add the EEBus configuration to `evcc.yaml`:
141+
142+
```yaml
143+
# Basic EEBus configuration
144+
eebus:
145+
certificate:
146+
public: |
147+
-----BEGIN CERTIFICATE-----
148+
# Insert public key here
149+
-----END CERTIFICATE-----
150+
private: |
151+
-----BEGIN EC PRIVATE KEY-----
152+
# Insert private key here
153+
-----END EC PRIVATE KEY-----
154+
# Optional: Specify network interface (recommended)
155+
interfaces:
156+
- eth0 # or the appropriate interface
157+
# Optional: Define your own SKI
158+
shipid: EVCC-1234567890abcdef
159+
```
160+
161+
### Step 3: HEMS Configuration
162+
163+
Configure the HEMS interface for § 14a EnWG:
164+
165+
```yaml
166+
hems:
167+
type: eebus
168+
ski: "1234-5678-90AB-CDEF" # SKI of the control box
169+
# You can find the SKI in your control box documentation
170+
```
171+
172+
:::note Note
173+
With EEBus, the power limit is automatically transmitted by the control box.
174+
:::
175+
176+
### Step 4: Determine SKI and Pairing
177+
178+
#### Determine evcc SKI
179+
180+
After starting evcc, your own SKI is displayed in the logs:
181+
182+
```bash
183+
evcc --log debug | grep -i ski
184+
```
185+
186+
#### Perform Pairing
187+
188+
1. **In the control box**: Add evcc as HEMS
189+
- Enter the SKI of evcc
190+
- Specify the IP address of evcc
191+
- Start the pairing process
192+
193+
2. **In evcc**: Add the control box SKI to the HEMS configuration
194+
- Enter the control box SKI in the HEMS configuration
195+
- Restart evcc
196+
197+
3. **Check connection**:
198+
```bash
199+
# Activate trace logging for EEBus
200+
evcc -l trace eebus
201+
```
202+
203+
:::tip Important
204+
205+
- Certificates only need to be generated once
206+
- After successful pairing, the configuration must not be changed
207+
:::
208+
209+
## How It Works
210+
211+
### Normal Operation
212+
213+
In normal operation, evcc charges without power limitation by the HEMS.
214+
The charging points operate with their normal configuration and are coordinated by additional [Load Management](./loadmanagement) restrictions if applicable.
215+
216+
### Reduction Signal Active
217+
218+
When the grid operator sends a reduction signal:
219+
220+
1. **Relay**: The contact is closed, evcc activates the configured `maxPower` limit
221+
2. **EEBus**: The control box digitally transmits the calculated total limit
222+
223+
evcc reduces all charging points assigned to the `lpc` circuit according to the limit.
224+
If total consumption is too high, charging processes can also be stopped.
225+
The control affects all modes (Solar, Min+Solar, Fast).
226+
227+
**Battery control during reduction:**
228+
If [active battery control](./battery#battery-control) is configured and grid charging of the home battery is active, this is automatically paused.
229+
The battery is set to "hold" mode so that it neither charges nor discharges.
230+
After the power reduction ends, grid charging automatically resumes.
231+
232+
When a control limit is active, a **banner with control notice** is displayed on the main page in evcc.
233+
234+
## Controlling Additional Consumers
235+
236+
In addition to charging points, other controllable consumers can also be integrated into § 14a load management.
237+
This applies e.g. to heat pumps or battery storage systems that are connected via EEBus or configured as meters with an additional relay output.
238+
239+
The control takes into account the current power consumption of all consumers assigned to the internal `lpc` circuit.
240+
This automatically includes all charging points and all meters with corresponding switching outputs or EEBus interface with LPC use case as other consumers.
241+
242+
First, all other consumers are dimmed.
243+
The remaining power is then distributed to the active charging points.
244+
Due to flat dimming of other consumers, the available charging power for active charging points can in exceptional cases even be higher than in normal state.
245+
If throttling the charging points including dimming all other consumers is not sufficient, charging processes at charging points are interrupted.
246+
247+
:::note Availability
248+
Currently, only one dimmable meter (EEBus consumer) exists.
249+
This feature is being expanded and compatible meters will be marked in the [device documentation](/docs/devices/meters).
250+
:::
251+
252+
## Further Information
253+
254+
- [Load Management](./loadmanagement) - Basics of load distribution
255+
- [Plugins](../devices/plugins) - Advanced plugin configurations

0 commit comments

Comments
 (0)