Structure-aware integration of machine learning and simulation to predict ribosome location profiles from RNA sequences.
- Linux (required for mamba-ssm)
- NVIDIA GPU with CUDA support
- CUDA Toolkit 11.8+ (check with
nvcc --version) - Conda package manager
# Clone the repository
git clone https://github.com/Kingsford-Group/seq2ribo.git
cd seq2ribo
# Create conda environment
conda env create -f environment.yml
# Activate
conda activate seq2ribo
# Install mamba-ssm (compiles from source, ~5-10 min)
python -m pip install --no-build-isolation mamba-ssm causal-conv1d
# Install seq2ribo package
pip install -e .python -c "import RNA; import mamba_ssm; import torch; print('All imports OK!')"Note: If your CUDA version differs from 11.8, edit
pytorch-cuda=11.8inenvironment.ymlto match your system.
See INSTALL.md for detailed troubleshooting.
from seq2ribo import Seq2Ribo
# Initialize predictor
predictor = Seq2Ribo(cell_line="hek293", weights_dir="weights")
# Predict ribosome density
sequence = "AUGGCCAAGCUGAAG..."
results = predictor.predict(sequence, task="riboseq")# Predict from sequence
python scripts/run_inference.py --seq "AUGGCC..." --cell-line hek293 --task riboseq
# Predict from FASTA
python scripts/run_inference.py --fasta input.fa --cell-line ipsc --output results.json| Task | Description | Output |
|---|---|---|
riboseq |
Ribosome profiling density | Per-codon counts |
te |
Translation efficiency | Scalar |
protein |
Protein expression | Scalar |
hek293- HEK293lcl- Lymphoblastoid Cell Linerpe- RPE-1ipsc- iPSC
seq2ribo/
├── seq2ribo/ # Core package
│ ├── inference.py # Main API
│ ├── models.py # Neural network models
│ ├── simulation.py # sTASEP simulation
│ └── geometry.py # RNA structure features
├── scripts/ # CLI scripts
├── weights/ # Model checkpoints
├── tests/ # Test suite
└── environment.yml # Conda environment
This project is licensed under the MIT License - see the LICENSE file for details.
(Citation to be added)