Skip to content

bytes has integer overflow in BytesMut::reserve

Moderate severity GitHub Reviewed Published Feb 3, 2026 in tokio-rs/bytes • Updated Feb 5, 2026

Package

cargo bytes (Rust)

Affected versions

>= 1.2.1, < 1.11.1

Patched versions

1.11.1

Description

Details

In the unique reclaim path of BytesMut::reserve, the condition

if v_capacity >= new_cap + offset

uses an unchecked addition. When new_cap + offset overflows usize in release builds, this condition may incorrectly pass, causing self.cap to be set to a value that exceeds the actual allocated capacity. Subsequent APIs such as spare_capacity_mut() then trust this corrupted cap value and may create out-of-bounds slices, leading to UB.

This behavior is observable in release builds (integer overflow wraps), whereas debug builds panic due to overflow checks.

PoC

use bytes::*;

fn main() {
    let mut a = BytesMut::from(&b"hello world"[..]);
    let mut b = a.split_off(5);

    // Ensure b becomes the unique owner of the backing storage
    drop(a);

    // Trigger overflow in new_cap + offset inside reserve
    b.reserve(usize::MAX - 6);

    // This call relies on the corrupted cap and may cause UB & HBO
    b.put_u8(b'h');
}

Workarounds

Users of BytesMut::reserve are only affected if integer overflow checks are configured to wrap. When integer overflow is configured to panic, this issue does not apply.

This vulnerability is also known as RUSTSEC-2026-0007.

References

@Darksonn Darksonn published to tokio-rs/bytes Feb 3, 2026
Published to the GitHub Advisory Database Feb 3, 2026
Reviewed Feb 3, 2026
Published by the National Vulnerability Database Feb 4, 2026
Last updated Feb 5, 2026

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Local
Attack Complexity Low
Attack Requirements None
Privileges Required None
User interaction None
Vulnerable System Impact Metrics
Confidentiality None
Integrity None
Availability High
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:L/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N/E:P

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(2nd percentile)

Weaknesses

Integer Overflow to Buffer Overflow

The product performs a calculation to determine how much memory to allocate, but an integer overflow can occur that causes less memory to be allocated than expected, leading to a buffer overflow. Learn more on MITRE.

CVE ID

CVE-2026-25541

GHSA ID

GHSA-434x-w66g-qw3r

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.