Skip to content

Pterodactyl improperly locks resources allowing raced queries to create more resources than alloted

Moderate severity GitHub Reviewed Published Jan 19, 2026 in pterodactyl/panel • Updated Feb 2, 2026

Package

composer pterodactyl/panel (Composer)

Affected versions

< 1.12.0

Patched versions

1.12.0

Description

Summary

Pterodactyl implements rate limits that are applied to the total number of resources (e.g. databases, port allocations, or backups) that can exist for an individual server. These resource limits are applied on a per-server basis, and validated during the request cycle.

However, it is possible for a malicious user to send a massive volume of requests at the same time that would create more resources than the server is allotted. This is because the validation occurs early in the request cycle and does not lock the target resource while it is processing. As a result sending a large volume of requests at the same time would lead all of those requests to validate as not using any of the target resources, and then all creating the resources at the same time.

As a result a server would be able to create more databases, allocations, or backups than configured.

Impact

A malicious user is able to deny resources to other users on the system, and may be able to excessively consume the limited allocations for a node, or fill up backup space faster than is allowed by the system.

References

@anthonyphysgun anthonyphysgun published to pterodactyl/panel Jan 19, 2026
Published by the National Vulnerability Database Jan 19, 2026
Published to the GitHub Advisory Database Jan 20, 2026
Reviewed Jan 20, 2026
Last updated Feb 2, 2026

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Network
Attack Complexity Low
Attack Requirements Present
Privileges Required Low
User interaction None
Vulnerable System Impact Metrics
Confidentiality None
Integrity None
Availability High
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability Low

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:N/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:L

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(13th percentile)

Weaknesses

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently. Learn more on MITRE.

Uncontrolled Resource Consumption

The product does not properly control the allocation and maintenance of a limited resource. Learn more on MITRE.

Improper Resource Locking

The product does not lock or does not correctly lock a resource when the product must have exclusive access to the resource. Learn more on MITRE.

Improper Locking

The product does not properly acquire or release a lock on a resource, leading to unexpected resource state changes and behaviors. Learn more on MITRE.

CVE ID

CVE-2025-69198

GHSA ID

GHSA-jw2v-cq5x-q68g

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.